Surface Innovations

ISSN 2050-6252 | E-ISSN 2050-6260
Volume 12 Issue 3-4, June 2024, pp. 181-190
Open access content Subscribed content Free content Trial content

REFERENCES
1. Bhat M Sakthikumar R Sivakumar D 2019 Fuel drop impact on heated solid surface in film evaporation regime Chemical Engineering Science 202 95 104 https://doi.org/10.1016/j.ces.2019.03.017 CrossrefGoogle Scholar
2. Parihar V Chakraborty S Das S Chakraborty S DasGupta S 2021 Role of anisotropic pinning and liquid properties during partial rebound of droplets on unidirectionally structured hydrophobic surfaces Chemical Engineering Science 230 article 116197 https://doi.org/10.1016/j.ces.2020.116197 CrossrefGoogle Scholar
3. Hu HB Yu SX Song D 2016 No-loss transportation of water droplets by patterning a desired hydrophobic path on a superhydrophobic surface Langmuir 32 29 7339 7345 https://doi.org/10.1021/acs.langmuir.6b01654 CrossrefGoogle Scholar
4. Zhou J Liu B Qi BJ Wei JJ Mao HY 2019 Experimental investigations of bubble behaviors and heat transfer performance on micro/nanostructure surfaces International Journal of Thermal Sciences 135 133 147 https://doi.org/10.1016/j.ijthermalsci.2018.09.013 CrossrefGoogle Scholar
5. Tokunaga A Tsuruta T 2020 Enhancement of condensation heat transfer on a microstructured surface with wettability gradient International Journal of Heat and Mass Transfer 156 article 119839 https://doi.org/10.1016/j.ijheatmasstransfer.2020.119839 CrossrefGoogle Scholar
6. Miljkovic N Enright R Wang EN 2012 Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces Nano 6 2 1776 1785 https://doi.org/10.1021/nn205052a Google Scholar
7. Phadnis A Rykaczewski K 2017 Dropwise condensation on soft hydrophobic coatings Langmuir 33 43 12095 12101 https://doi.org/10.1021/acs.langmuir.7b03141 CrossrefGoogle Scholar
8. Zhang P Maeda Y Lv FY Takata Y Orejon D 2017 Enhanced coalescence-induced droplet-jumping on nanostructured superhydrophobic surfaces in the absence of microstructures Applied Materials & Interfaces 9 40 35391 35403 https://doi.org/10.1021/acsami.7b09681 CrossrefGoogle Scholar
9. Khatir Z Kubiak KJ Jimack PK Mathia TG 2016 Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach Applied Thermal Engineering 106 1337 1344 https://doi.org/10.1016/j.applthermaleng.2016.06.128 CrossrefGoogle Scholar
10. Rose JW 2002 Dropwise condensation theory and experiment: a review Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 216 2 115 128 https://doi.org/10.1243/09576500260049034 CrossrefGoogle Scholar
11. Preston DJ Mafra DL Miljkovic N Kong J Wang EN 2015 Scalable graphene coatings for enhanced condensation heat transfer Nano Letters 15 5 2902 2909 https://doi.org/10.1021/nl504628s CrossrefGoogle Scholar
12. Shen YZ Xie YH Tao J 2019 Rationally designed nanostructure features on superhydrophobic surfaces for enhancing self-propelling dynamics of condensed droplets ACS Sustainable Chemistry & Engineering 7 2 2702 2708 https://doi.org/10.1021/acssuschemeng.8b05780 CrossrefGoogle Scholar
13. Xu J Liu GD Lian JD Ni J Xiao J 2018 Droplet transient migration and dynamic force balance mechanism on vibration-controlled micro-texture surfaces Current Applied Physics 18 11 1368 1374 https://doi.org/10.1016/j.cap.2018.07.023 CrossrefGoogle Scholar
14. Li T Li J Lin HH 2019 Control of wettability transition and coalescence dynamics of droplets on the surface via mechanical vibration: a molecular simulation exploration Applied Surface Science 473 393 400 https://doi.org/10.1016/j.apsusc.2018.12.171 Google Scholar
15. Strutt JW 1879 VI. On the capillary phenomena of jets Proceedings of the Royal Society of London 29 196–199 71 97 https://doi.org/10.1098/rspl.1879.0015 CrossrefGoogle Scholar
16. Borcia R Borcia ID Bestehorn M 2014 Can vibrations control drop motion? Langmuir 30 47 14113 14117 https://doi.org/10.1021/la503415r CrossrefGoogle Scholar
17. Hao P Lv C Zhang X 2011 Driving liquid droplets on microstructured gradient surface by mechanical vibration Chemical Engineering Science 66 10 2118 2123 https://doi.org/10.1016/j.ces.2011.02.015 CrossrefGoogle Scholar
18. Brunet P Eggers J Deegan RD 2009 Motion of a drop driven by substrate vibrations European Physical Journal Special Topics 166 1 11 14 https://doi.org/10.1140/epjst/e2009-00870-6 CrossrefGoogle Scholar
19. Duncombe TA Parsons JF Böhringer KF 2012 Directed drop transport rectified from orthogonal vibrations via a flat wetting barrier ratchet Langmuir 28 38 13765 13770 https://doi.org/10.1021/la3024309 CrossrefGoogle Scholar
20. Dong Y Holmes HR Böhringer KF 2017 Converting vertical vibration of anisotropic ratchet conveyors into horizontal droplet motion Langmuir 33 40 10745 10752 https://doi.org/10.1021/acs.langmuir.7b02504 CrossrefGoogle Scholar
21. Zhou QB Jia ZH Xiong XJ Wang J Dai XR 2023 Self-propelled drops on hydrophilic microfinned surfaces Surface Innovations 11 5 297 305 https://doi.org/10.1680/jsuin.22.01012 LinkGoogle Scholar
22. Chambers L Roach P Shirtcliffe N 2022 Recent innovations in surface topography Surface Innovations 10 6 341 372 https://doi.org/10.1680/jsuin.22.01041 LinkGoogle Scholar
23. Dai X Jia Z Wang J 2023 Dynamic characteristics of drops on tilted hydrophobic ratchet surfaces Surface Innovations 11 1–3 60 69 https://doi.org/10.1680/jsuin.21.00082 LinkGoogle Scholar
24. Bormashenko E Laux D 2015 Oscillating/vibrating surfaces In Droplets Wetting and Evaporation 1 Brutin D Academic Press London, UK 395 411 CrossrefGoogle Scholar
25. Boreyko JB Chen CH 2009 Restoring superhydrophobicity of lotus leaves with vibration-induced dewetting Physical Review Letters 103 17 article 174502 https://doi.org/10.1103/physrevlett.103.174502 CrossrefGoogle Scholar
26. Boreyko JB Baker CH Poley CR 2011 Wetting and dewetting transitions on hierarchical superhydrophobic surfaces Langmuir 27 12 7502 7509 https://doi.org/10.1021/la201587u CrossrefGoogle Scholar
27. Lei W Jia ZH He JC Cai TM Wang G 2014 Vibration-induced Wenzel–Cassie wetting transition on microstructured hydrophobic surfaces Applied Physics Letters 104 18 article 181601 https://doi.org/10.1063/1.4875586 CrossrefGoogle Scholar
28. Chamakos NT Karapetsas G Papathanasiou AG 2016 How asymmetric surfaces induce directional droplet motion Colloids and Surfaces A: Physicochemical and Engineering Aspects 511 180 189 https://doi.org/10.1016/j.colsurfa.2016.09.078 CrossrefGoogle Scholar
29. Chen DX Sheng YY Kang ZX Li W 2022 One-step depositing stable superhydrophobic coatings with controllable wettability Surface Innovations 10 1 37 47 https://doi.org/10.1680/jsuin.21.00001 LinkGoogle Scholar
30. Bormashenko E Pogreb R Whyman G Erlich M 2007 Resonance Cassie–Wenzel wetting transition for horizontally vibrated drops deposited on a rough surface Langmuir 23 24 12217 12221 https://doi.org/10.1021/la7016374 CrossrefGoogle Scholar
31. Noblin X Buguin A Brochard-Wyart F 2004 Vibrated sessile drops: transition between pinned and mobile contact line oscillations European Physical Journal E 14 4 395 404 https://doi.org/10.1140/epje/i2004-10021-5 CrossrefGoogle Scholar
32. Mettu S Chaudhury MK 2011 Motion of liquid drops on surfaces induced by asymmetric vibration: role of contact angle hysteresis Langmuir 27 16 10327 10333 https://doi.org/10.1021/la201597c CrossrefGoogle Scholar
33. Shin YS Lim HC 2014 Shape oscillation and detachment conditions for a droplet on a vibrating flat surface European Physical Journal E 37 8 article 74 https://doi.org/10.1140/epje/i2014-14074-5 CrossrefGoogle Scholar
34. Costalonga M Brunet P 2020 Directional motion of vibrated sessile drops: a quantitative study Physical Review Fluids 5 2 article 023601 https://doi.org/10.1103/PhysRevFluids.5.023601 CrossrefGoogle Scholar
35. Yong CJ Bhushan B 2009 Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces Langmuir 25 16 9208 9218 https://doi.org/10.1021/la900761u CrossrefGoogle Scholar

Related content

Related search

By Keyword
By Author

No search history

Recently Viewed