
Leidenfrost instability in a circular container and its suppression using a rod
Authors:
... Show All
Manjarik Mrinal
x
Xiang WangSearch for articles by this author
Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, USA
x
Zhenxue HanSearch for articles by this author
Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, USA
x
Cheng LuoSearch for articles by this author
Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, USA
x
Search for articles by this author
Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, TX, USA
Author Affiliations
Published Online: October 31, 2022




REFERENCES |
---|
1. | Leidenfrost JG 1966 On the fixation of water in diverse fire International Journal of Heat and Mass Transfer 9 11 1153 1166 https://doi.org/10.1016/0017-9310(66)90111-6 Crossref, Google Scholar |
2. | Mrinal M Wang X Luo C 2017 Self-rotation-induced propulsion of a Leidenfrost drop on a ratchet Langmuir 33 25 6307 6313 https://doi.org/10.1021/acs.langmuir.7b01420 Crossref, Google Scholar |
3. | Luo C Mrinal M Wang X 2017 Self-propulsion of Leidenfrost drops between non-parallel structures Scientific Reports 7 article 12018 https://doi.org/10.1038/s41598-017-12279-6 Crossref, Google Scholar |
4. | Bouillant A Mouterde T Bourrianne P 2018 Leidenfrost wheels Nature Physics 14 12 1188 1192 https://doi.org/10.1038/s41567-018-0275-9 Crossref, Google Scholar |
5. | Quéré D Ajdari A 2006 Liquid drops: surfing the hot spot Nature Materials 5 6 429 430 https://doi.org/10.1038/nmat1656 Crossref, Google Scholar |
6. | Linke H Alemán BJ Melling LD 2016 Self-propelled Leidenfrost droplets Physical Review Letters 96 15 article 154502 https://doi.org/10.1103/PhysRevLett.96.154502 Crossref, Google Scholar |
7. | Arter J Cleaver D Takashina K 2018 Self-propelling Leidenfrost droplets on a variable topography surface Physical Review Letters 113 24 article 243704 https://doi.org/10.1063/1.5056249 Google Scholar |
8. | Ryan RM Pulliam CJ Thery F 2016 Accelerated chemical reactions and organic synthesis in Leidenfrost droplets Angewandte Chemie 55 35 10478 10482 https://doi.org/10.1002/anie.201605899 Crossref, Google Scholar |
9. | Elbahri M Paretkar D Hirmas K 2007 Anti-lotus effect for nanostructuring at the Leidenfrost temperature Advanced Materials 19 9 1262 1266 https://doi.org/10.1002/adma.200601694 Crossref, Google Scholar |
10. | Abdelaziz R Zayed DD Hedayati MK 2013 Green chemistry and nanofabrication in a levitated Leidenfrost drop Nature Communications 4 1 article 2400 https://doi.org/10.1038/ncomms3400 Crossref, Google Scholar |
11. | Vakarelski IU Marston JO Chan DYC 2011 Drag reduction by Leidenfrost vapor layers Physical Review Letters 106 21 article 214501 https://doi.org/10.1103/PhysRevLett.106.214501 Crossref, Google Scholar |
12. | Vakarelski IU Patankar NA Marston JO 2012 Stabilization of Leidenfrost vapor layer by textured superhydrophobic surfaces Nature 489 7415 274 277 https://doi.org/10.1038/nature11418 Crossref, Google Scholar |
13. | Biance AL 2004 Gouttes Inertielles: de la Caléfaction à l'Étalement. PhD thesis University of Paris VI Paris, France Google Scholar |
14. | Biance AL Clanet C Quéré D 2003 Leidenfrost drops Physics of Fluids 15 6 1632 1637 https://doi.org/10.1063/1.1572161 Crossref, Google Scholar |
15. | Rayleigh L 1882 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density Proceedings of the London Mathematical Society s1-14 1 170 177 https://doi.org/10.1112/plms/s1-14.1.170 Crossref, Google Scholar |
16. | Taylor GI 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes Proceedings of the Royal Society A 201 1065 192 196 https://doi.org/10.1098/rspa.1950.0052 Google Scholar |
17. | Sharp DH 1984 An overview of Rayleigh–Taylor instability Physica D: Nonlinear Phenomena 12 1–3 11 18 https://doi.org/10.1016/0167-2789(84)90510-4 Crossref, Google Scholar |
18. | Hidalgo-Caballero S Escobar-Ortega Y Pacheco-Vázquez F 2016 Leidenfrost phenomenon on conical surfaces Physical Review Fluids 1 5 article 051902 https:doi.org/10.1103/PhysRevFluids.1.051902 Crossref, Google Scholar |
19. | Burgess M Juel A McCormick WD 2001 Suppression of dripping from a ceiling Physical Review Letters 86 7 article 1203 https://doi.org/10.1103/PhysRevLett.86.1203 Crossref, Google Scholar |
20. | Fermigier M Limat L Wesfreid JE 1992 Two-dimensional patterns in Rayleigh–Taylor instability of a thin layer Journal of Fluid Mechanics 236 349 383 https://doi.org/10.1017/S0022112092001447 Crossref, Google Scholar |
21. | Chandrasekhar S 1961 The stability of superposed fluids: the Rayleigh–Taylor instability Hydrodynamic and Hydromagnetic Stability Oxford University Oxford, UK 428 477 Google Scholar |
22. | Maxwell JC 1890 The Scientific Papers of James Clerk Maxwell: Vol. II Niven WD Cambridge University Press Cambridge, UK p. 587 Google Scholar |
23. | Yih CS 1980 Stratified Flows Academic New York, NY, USA Google Scholar |
24. | Bell GI 1951 Taylor Instability on Cylinders and Spheres in the Small Amplitude Approximation Los Alamos National Laboratory Los Alamos, NM, USA Report No. LA-1321 Google Scholar |
25. | Li RQ Harris R 1995 Rayleigh–Taylor instability of a cylindrical interface between two inviscid fluids Journal of Applied Mechanics 62 2 356 361 https://doi.org/10.1115/1.2895938 Crossref, Google Scholar |
26. | Plesset MS 1954 On the stability of fluid flows with spherical symmetry Journal of Applied Physics 25 1 96 98 https://doi.org/10.1063/1.1721529 Crossref, Google Scholar |
27. | Perrard S Couder Y Fort E 2012 Leidenfrost levitated liquid tori Europhysics Letters 100 5 article 54006 https://doi.org/10.1209/0295-5075/100/54006 Crossref, Google Scholar |
28. | Dupeux G Bourrianne P Magdelaine Q 2014 Propulsion on a superhydrophobic ratchet Scientific Reports 4 article 5280 https://doi.org/10.1038/srep05280 Crossref, Google Scholar |
29. | Quéré D 2013 Leidenfrost dynamics Annual Review of Fluid Mechanics 45 1 197 215 https://doi.org/10.1146/annurev-fluid-011212-140709 Crossref, Google Scholar |
30. | Adamson AV 1990 Physical Chemistry of Surfaces Wiley New York, NY, USA Google Scholar |
31. | Snoeijer JH Brunet P Eggers J 2009 Maximum size of drops levitated by an air cushion Physical Review E 79 3 article 036307 https://doi.org/10.1103/PhysRevE.79.036307 Crossref, Google Scholar |
Related content
Content tools
Site Tools
No search history
Recently Viewed
-
Manjarik Mrinal,Xiang Wang,Zhenxue HanandCheng Luo