Surface Innovations

ISSN 2050-6252 | E-ISSN 2050-6260
Volume 11 Issue 6-7, October 2023, pp. 397-408
Open access content Subscribed content Free content Trial content

REFERENCES
1. Leidenfrost JG 1966 On the fixation of water in diverse fire International Journal of Heat and Mass Transfer 9 11 1153 1166 https://doi.org/10.1016/0017-9310(66)90111-6 CrossrefGoogle Scholar
2. Mrinal M Wang X Luo C 2017 Self-rotation-induced propulsion of a Leidenfrost drop on a ratchet Langmuir 33 25 6307 6313 https://doi.org/10.1021/acs.langmuir.7b01420 CrossrefGoogle Scholar
3. Luo C Mrinal M Wang X 2017 Self-propulsion of Leidenfrost drops between non-parallel structures Scientific Reports 7 article 12018 https://doi.org/10.1038/s41598-017-12279-6 CrossrefGoogle Scholar
4. Bouillant A Mouterde T Bourrianne P 2018 Leidenfrost wheels Nature Physics 14 12 1188 1192 https://doi.org/10.1038/s41567-018-0275-9 CrossrefGoogle Scholar
5. Quéré D Ajdari A 2006 Liquid drops: surfing the hot spot Nature Materials 5 6 429 430 https://doi.org/10.1038/nmat1656 CrossrefGoogle Scholar
6. Linke H Alemán BJ Melling LD 2016 Self-propelled Leidenfrost droplets Physical Review Letters 96 15 article 154502 https://doi.org/10.1103/PhysRevLett.96.154502 CrossrefGoogle Scholar
7. Arter J Cleaver D Takashina K 2018 Self-propelling Leidenfrost droplets on a variable topography surface Physical Review Letters 113 24 article 243704 https://doi.org/10.1063/1.5056249 Google Scholar
8. Ryan RM Pulliam CJ Thery F 2016 Accelerated chemical reactions and organic synthesis in Leidenfrost droplets Angewandte Chemie 55 35 10478 10482 https://doi.org/10.1002/anie.201605899 CrossrefGoogle Scholar
9. Elbahri M Paretkar D Hirmas K 2007 Anti-lotus effect for nanostructuring at the Leidenfrost temperature Advanced Materials 19 9 1262 1266 https://doi.org/10.1002/adma.200601694 CrossrefGoogle Scholar
10. Abdelaziz R Zayed DD Hedayati MK 2013 Green chemistry and nanofabrication in a levitated Leidenfrost drop Nature Communications 4 1 article 2400 https://doi.org/10.1038/ncomms3400 CrossrefGoogle Scholar
11. Vakarelski IU Marston JO Chan DYC 2011 Drag reduction by Leidenfrost vapor layers Physical Review Letters 106 21 article 214501 https://doi.org/10.1103/PhysRevLett.106.214501 CrossrefGoogle Scholar
12. Vakarelski IU Patankar NA Marston JO 2012 Stabilization of Leidenfrost vapor layer by textured superhydrophobic surfaces Nature 489 7415 274 277 https://doi.org/10.1038/nature11418 CrossrefGoogle Scholar
13. Biance AL 2004 Gouttes Inertielles: de la Caléfaction à l'Étalement. PhD thesis University of Paris VI Paris, France Google Scholar
14. Biance AL Clanet C Quéré D 2003 Leidenfrost drops Physics of Fluids 15 6 1632 1637 https://doi.org/10.1063/1.1572161 CrossrefGoogle Scholar
15. Rayleigh L 1882 Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density Proceedings of the London Mathematical Society s1-14 1 170 177 https://doi.org/10.1112/plms/s1-14.1.170 CrossrefGoogle Scholar
16. Taylor GI 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes Proceedings of the Royal Society A 201 1065 192 196 https://doi.org/10.1098/rspa.1950.0052 Google Scholar
17. Sharp DH 1984 An overview of Rayleigh–Taylor instability Physica D: Nonlinear Phenomena 12 1–3 11 18 https://doi.org/10.1016/0167-2789(84)90510-4 CrossrefGoogle Scholar
18. Hidalgo-Caballero S Escobar-Ortega Y Pacheco-Vázquez F 2016 Leidenfrost phenomenon on conical surfaces Physical Review Fluids 1 5 article 051902 https:doi.org/10.1103/PhysRevFluids.1.051902 CrossrefGoogle Scholar
19. Burgess M Juel A McCormick WD 2001 Suppression of dripping from a ceiling Physical Review Letters 86 7 article 1203 https://doi.org/10.1103/PhysRevLett.86.1203 CrossrefGoogle Scholar
20. Fermigier M Limat L Wesfreid JE 1992 Two-dimensional patterns in Rayleigh–Taylor instability of a thin layer Journal of Fluid Mechanics 236 349 383 https://doi.org/10.1017/S0022112092001447 CrossrefGoogle Scholar
21. Chandrasekhar S 1961 The stability of superposed fluids: the Rayleigh–Taylor instability Hydrodynamic and Hydromagnetic Stability Oxford University Oxford, UK 428 477 Google Scholar
22. Maxwell JC 1890 The Scientific Papers of James Clerk Maxwell: Vol. II Niven WD Cambridge University Press Cambridge, UK p. 587 Google Scholar
23. Yih CS 1980 Stratified Flows Academic New York, NY, USA Google Scholar
24. Bell GI 1951 Taylor Instability on Cylinders and Spheres in the Small Amplitude Approximation Los Alamos National Laboratory Los Alamos, NM, USA Report No. LA-1321 Google Scholar
25. Li RQ Harris R 1995 Rayleigh–Taylor instability of a cylindrical interface between two inviscid fluids Journal of Applied Mechanics 62 2 356 361 https://doi.org/10.1115/1.2895938 CrossrefGoogle Scholar
26. Plesset MS 1954 On the stability of fluid flows with spherical symmetry Journal of Applied Physics 25 1 96 98 https://doi.org/10.1063/1.1721529 CrossrefGoogle Scholar
27. Perrard S Couder Y Fort E 2012 Leidenfrost levitated liquid tori Europhysics Letters 100 5 article 54006 https://doi.org/10.1209/0295-5075/100/54006 CrossrefGoogle Scholar
28. Dupeux G Bourrianne P Magdelaine Q 2014 Propulsion on a superhydrophobic ratchet Scientific Reports 4 article 5280 https://doi.org/10.1038/srep05280 CrossrefGoogle Scholar
29. Quéré D 2013 Leidenfrost dynamics Annual Review of Fluid Mechanics 45 1 197 215 https://doi.org/10.1146/annurev-fluid-011212-140709 CrossrefGoogle Scholar
30. Adamson AV 1990 Physical Chemistry of Surfaces Wiley New York, NY, USA Google Scholar
31. Snoeijer JH Brunet P Eggers J 2009 Maximum size of drops levitated by an air cushion Physical Review E 79 3 article 036307 https://doi.org/10.1103/PhysRevE.79.036307 CrossrefGoogle Scholar

Related content

Related search

By Keyword
By Author

No search history

Recently Viewed