Magazine of Concrete Research

ISSN 0024-9831 | E-ISSN 1751-763X
Volume 72 Issue 19, October, 2020, pp. 984-1005
Open access content Subscribed content Free content Trial content

Although high-strength concrete (HSC) has higher compressive strength than normal-strength concrete (NSC), its application in column construction is often limited by its brittleness and limited post-peak ductility. In this preliminary study, hybrid fibre engineered cementitious composite (ECC) is proposed as a potential encasement material to confine the HSC core and to increase the column's ductility. The behaviours of the proposed ECC-encased concrete stub column under axial compression are studied experimentally. Thirty stub columns, including six NSC/HSC, six ECC and 18 ECC-encased NSC/HSC (ECC–NSC/HSC) are tested under axial compression. The effects of ECC strength, ECC encasement thickness, concrete strength and cross-section shapes (circular, square and rectangular) are then investigated and reported in terms of failure modes, strength ratios, post-peak ductility and energy dissipation capacity of the stub columns. It is found that, when comparing with NSC/HSC stub columns, although no significant improvement in the ultimate strength was observed, the ECC encasement improved the performance of ECC–NSC/HSC stub columns by reducing brittleness and improving the post-peak behaviour during failure.

Full Text


Cited By

Related content

Related search

By Keyword
By Author

No search history

Recently Viewed