Géotechnique

ISSN 0016-8505 | E-ISSN 1751-7656
Volume 64 Issue 1, January 2014, pp. 40-50
Open access content Subscribed content Free content Trial content

This paper is a numerical investigation of the physical phenomena that control the dynamic behaviour of embedded cantilevered retaining walls. Recent experimental observations obtained from centrifuge tests have shown that embedded cantilevered retaining walls experience permanent displacements even before the acceleration reaches its critical value, corresponding to full mobilisation of the soil strength. The motivation for this work stems from the need to incorporate these observations in simplified design procedures. A parametric study was carried out on a pair of embedded cantilevered walls in dry sand, subjected to real earthquakes scaled at different values of the maximum acceleration. The results of these analyses indicate that, for the geotechnical design of the wall, the equivalent acceleration to be used in pseudo-static calculations can be related to the maximum displacement that the structure can sustain, and can be larger than the maximum acceleration expected at the site. For the structural design of the wall, it is suggested that the maximum bending moments of the wall can be computed using a realistic distribution of contact stress and a conservative value of the pseudo-static acceleration, taking into account two-dimensional amplification effects near the walls.

Full Text

References

Cited By

Related content

Related search

By Keyword
By Author

No search history

Recently Viewed